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An iteration scheme for the implicit treatment of equilibrium
chemical reactions in partial equilibrium flow has previously been
described (J. D. Ramshaw and A. A. Amsden, J. Comput. Phys. 59,
484 (1985); 71, 224 (1987}). Here we generalize this scheme to kinetic
reactions as well as equilibrium reactions. This extends the applica-
bility of the scheme to problems with kinetic reactions that are fast
in some regions of the flow field but slow in others. The resulting
scheme thereby provides a single unified framework for the implicit
treatment of an arbitrary number of coupled equilibrium and kinetic
reactions in chemically reacting fluid flow. © 1995 Academic Press, inc.

L INTRODUCTION AND SUMMARY

Partial equilibrium flow {1, 2} is a useful idealization of
multicomponent fluid flow with multiple chemical reactions,
some of which are so fast that they may be assumed to be in
equilibrium, while the remaining slower reactions are computed
kinetically. The equilibrium reactions require an implicit treat-
ment, which produces a system of coupled nonlinear equations
that must in general be solved iteratively [3, 4].

Each reaction in a partial equilibrium fow must be classified
as “‘fast’” or “‘slow’” globally, i.e., independently of position
and time [1, 2]. Thus a reaction must be fast everywhere to be
considered an equilibrium reaction. This framework is clearly
not well suited to problems with reactions that are fast in some
regions but slow in others, Such reactions cannot be considered
equilibrium reactions globally, so they must be treated kinet-
ically. This is often done using simple explicit or partially
implicit methods (e.g., [5, 6]). Unfortunately, such methods
require the use of very small time steps for stability and/or
accuiacy in the fast regions, and this largely negates the benefits
of the partial equilibrium description.

The need for small time steps in such problems can be
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removed by treating all fast and equilibrium reactions together
in a fully implicit and fully coupled manner. Our purpose here
is to show how this may be done by suitably generalizing
a previously described iteration scheme for the equilibrium
reactions alone [3, 4], Reactions that are slow everywhere may
still be treated by explicit or partially implicit methods in the
usual way, or they may be included in the iteration if desired.
Thus the present scheme provides a general method for fully
implicit treatment of chemical reactions in multicomponent
fluid dynamics, which applies as a special case to problems in
which some or all of the reactions are in equilibrium,

The present scheme retains the overall structure of the previ-
ous equilibriom scheme (3, 4], in which the first several itera-
tions are performed with a simple one-step Gauss—Seidel-
Newton method, while subsequent iterations are performed us-
ing a full Newton—Raphson method. However, the residual
associated with each reaction must now be suitably redefined
to include the kinetic terms. The presence of the latter terms is
unfortunately incompatible with the nonlinear preconditioning
that was previously used, so this too must be modified in defin-
ing the residuals. The redefined residuoals then imply a corre-
sponding redefinition of their Jacobian matrix with respect to
the progress rates. The remainder of the previous scheme {3,
4] is basically unchanged, except that we have considerably
simplified the logic for scaling back Newton—Raphson over-
shoots. Consequently, any computer code based on the criginal
scheme can easily be converted to the new scheme by relatively
minor modifications. In particular, the new scheme has been
incorporated into the LAV A code for simulating thermal plasma
processes [7, 8], and we are hopeful that it will also prove
useful to the growing KIVA [5, 6] user community.

II. TIME DIFFERENCING

We consider a multicomponent fluid flow with multiple si-
multaneous chemical reactions. The reactions to be treated in
a fully implicit and fully coupled manner are labeled by the
index s and are symbolized by

2;, apX, = Z b Xi, (1)
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where s ranges from 1 to N, @, and b, are dimensionless
stoichiometric ceefficients, and X, represents one mole of spe-
cies k. The progress rate for reaction s is denoted by w, and is
given by the kinetic rate expression

d’s = kst! - khspsa (2)

where k; and k,, are respectively the forward and backward
rate coefficients for reaction s (which are functions of the tem-

perature T}, and
P s P\
RI = T q ; P.!' = Sy k]
uG) e-n(En e

where g, and M, are respectively the partial mass density and
molecular weight of species k. In what follows it will be conve-
nient to eliminate &, in favor of the (concentration} equilibrium
constant K, = k/k,,, which is a purely thermodynamic quantiry.
Equilibrium reactions can then be treated as special cases of
kinetic reactions by sending k, — ¢ at constant K;, while
unidirectional kinetic reactions with k,, = 0 can be treated by
sending K, — o at constant kj.

The chemical reactions contribute source terms to the evolu-
tion equations for g, and for the specific thermal internal energy
¢, as given by

ap, d :
a(pe) _ [ ape) '
at [ ot ]0 * 2 Qo >

where p = Z,p, is the total mass density, Q, is the negative
heat of reaction for reaction s at T = 0 K, and [dp,/a¢); and
[9{ pe)/ dt]y represent the effects of convection, diffusion, source
and sink terms, and any chemical reactions not treated im-
plicitly.

We are concerned with time-marching methods in which
the evolution equations are solved numerically by using finite
differences to approximate time derivatives. Such methods gen-
erale the approximate solution at a sequence of discrete times
1" separated by time steps Ar = "' — 1% As usual, the time
level will be displayed as a superscript, so that " denotes
the difference approximation to the quantity G(f) at ¢ = ¢".
Superscript # + 1 (the “‘new’’ time level) will frequently be
suppressed for simplicity. We restrict attention to two-level
schemes in which the time derivative G/t is simply approxi-
mated by (G™! — G")Y/At. The present method is primarily
intended for use in conjunction with time-splitting schemes in
which the terms [dp,/0t], and [3{pe)/dr], may be evaluated
without exact knowledge of the final new-time values p{*! and
e"*!. These terms may therefore be regarded as known for
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present purposes. The difference approximations to Egs. (4)
and (3} may then be written in the form

P = prt = b+ M D (b — ar)w, (6)
pe = (pey™' = pe + >, Qo N

where @, = @At is the progress increment for reaction s on
the current time step and -

I

pk—karAtI:aI]o (8)

Be = (pey + At [M] )
dt o

The latter quantities represent partially updated values of p,
and pe which serve as the initial or starting values for the
iteration scheme,

The progress increments are determined by a suitable implicit
approximation to Eq. (2), namely

w; P,

= 1\
Atk R-% (10)

where R; and P, are evaluated using the new-time p, given by
Eq. (6), and k&; and K, are suitable approximations to their
values at T = 7"*'. These approximations are defined by

dln kfj "
Ink = In k(T + | —2) (7= T7) (11)
oT
dIln K. \"
InK, = InK,(T" + (T - T, (12)
oT
where T is an approximation to 7°*' given by
r=p+ 8 _Fi Ly o 3
PCy PCy s

with pe given by Eq. (7). Here ¢, is the specific heat at constant
volume, and T is defined by

e 4 () = (pe)
pe.

(14)

Note that Eqs. (11)—(13) become exact rather than approximate
in steady state. Note also that Eq. (10) has been written in
a form which remains well behaved in the special cases of
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equilibrium reactions (k; — ) and unidirectional reactions
(K, — o).

III. THE ITERATION SCHEME

The P, and R, depend on the o, through Egs. (3) and (6),
while k; and K, depend on the w, through Eqgs. (11}-(13).
Equation (10) may therefore be regarded as a system of NV
coupled nonlinear equations in the N unknowns w,. This is the
system of equations which the iteration scheme must solve.

In the previous scheme for equilibrivm reactions [3, 4], it
was found that convergence could be substantially accelerated
by the use of nonlinear preconditioning to make the equations
more nearly linear in the progress increments. In the present
context, however, the kinetic term w,/(Atks) in Eq. (10) is
already linear in w,, so preconditioning is needed only when
this term becomes small, i.e., for reactions close to equilibrium.
For such reactions, however, preconditioning is essential to
obtain convergence rates comparable to those of the previous
scheme.

Unfortunately, the previous preconditioning procedure [3]
no longer applies due to the presence of the kinetic term. We
must therefore devise an alternative procedure which is similar
in spirit and effect. We begin by identifying the species involved
in reaction s whose concentration depends most sensitively on
®,; 1.e., the species for which p;'|dp/éw,| = (M p)|by, — ai|
is 3 maximum, This species is referred to as the reference
species for reaction s and is denoted by species index k = k(s).
{This definition of reference species differs slightly from that
used in the equilibrium case {3].) To simplify the notation, it
is convenient o lel 4, = ay,, and b, = b,,,. Note that
b, # a,. It is also convenient to denote the reference species
concentration by ¢, = p.,/M,. The primary dependence on
w, in the right member of Eq. (10} is now regarded as being
contained in c,.

The next step is to determine which of the two terms in the
right member of Eq. (10) is the more nonlinear in w,. For this
purpose we shall evaluate rough approximations to the second
derivatives of these terms with respect to «w;, based on the
simplifying assumption that they depend on , only through
the factors ¢ and cb in R, and P,, respectively. Under this
assumption, we find that the second derivatives of the terms
R, and P /K are proportional to the quantities Df = a,(q, ~ 1R,
and Df = b(b, — 1)P /K., respectively, where the coefficient of
proportionality is the same for both terms.

We now consider the primary nonlinear dependence on w,
in Eq. (10) to be contained in the term P/K, if DF > DF, and
in the term R, if 07 < D . The nonlinearity can then be isolated
by solving Eq. (10) for P, or R,, respectively. Since ¢, itself is
linear in w,, the primary dependence on w; can then be made
to manifest itsell linearly by raising both sides of the resulting
equation to the power

{I/ba (D? > D8
g, =
Va,

15
(DT < DF, (1>
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According to the above procedure, Eq. (10} is now replaced
by the equivalent system

F, =0, (16)
where the residual F| is defined by
Pe—Us (D7>DDH
F.= an
Re— Ve (DI<D})
in which
o,
- 18
vo= (R Azkﬁ) (18)
P w,
Vi=—=+—. 19
K, Ak (19

As discussed above, preconditioning is unnecessary when
the kinetic term is sufficiently large that reaction s is no longer
close to equilibrium. We consider this to be the case when |w,}/
(Atks) = 0.1P/K,. This condition is dynamically monitored
on every iteration, and whenever it is satisfied we simply tum
off the preconditioning by setting e, = 1 for the remainder of
the iterations on that particular time step.

Equation (16) is the system that will actually be solved. To
do so, we employ the same two-stage procedure used in the
equilibrium case [3, 4] in which the first several iterations
are performed with a one-step Gauss—Seidel-Newton (GSN)
method, while subsequent iterations (if necessary) are per-
formed using a full Newton—Raphson (NR) method. This proce-
dure requires evaluation of the Jacobian matrix of partial deriva-
tives 6 F/dw,, which may be expressed in terms of the simpler
and more basic derivatives

dlnR, M,
Aﬂ = 5
y 9, 2 o (b — ) 20
din PS M,
B, = T e g bis(bie — ay) 1)
W, [
dInk;, dlnk,\"
thb_(sokpe
duw, aT J pe,
K, (dalmK\ @,
o= e ( aT ) pe, @3)

where use has been made of Egs. (3), (6), and (11)—(13). It is
convenient to first evaluate a/,/dew, and 3V,/dw,, with the re-
sults

U,
a_— - {R (Asz + Bsr) +— At kf\ [ms(a:r - Bs:) - 65!]} (24)
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oV, P, 1
T __(B!l - Bsr) + F (6“ - wsan)v (25)

aw, KS kf;

where &, is the Kronecker delta. Differentiating Eq. (17), we
finally obtain

OF, _
dw,

P:B, — Uy (8UJ3w) (D]>D}
s (26)

REA, — Ve l{aVi/iaw) (DL< Db,

We are now in a position to define the one-step GSN and
NR methods of which the present scheme is comprised. The
iteration index v will be displayed as a superscript in parenthe-
ses, so that G denotes the value of G after iteration v. The
one-step GSN method is defined by [3]

dw, = oY ~ ¥

- S(w(lwl)’ simy wgt*—ll)! mS'V)! .y w‘(ﬂl;)) (27)
T AF (P, ., o), w®, ., ool
subject to the restriction [3)
0.96w™ < Sw, = 0.98w™, (28)

where Sw™" and Sw ™" are respectively the minimum and maxi-
mum values of e, that preserve the nonnegativity of the p,,
which are given by

s

Seomin = (:min M, — bks)]_l‘

k P 29)
_ -1
Seom = [max M(ai bk:)] ,
k P

in which the p, represent the current intermediate approximation
to the species densities, as discussed below. The full NR method
is defined by

3 (St d,) 8w, = —FOIJ,, (30)

where J,; = (8 F,/dw,)™. Since the J, often vary by many orders
of magnitude, these equations have been scaled so that the
diagonal elements of the associated matrix are all unity, To
obtain the &e,, and thereby the wi**Y, it is necessary to solve
the linear system of Eg. (30). This may be done using any of the
standard methods; we simply use the LAPACK [9] subroutine
DGESVX to solve the system by Gaussian elimination with
partial pivoting.

Each iterative approximation to the w, produces a correspond-
ing approximation to the p, and pe via Egs. (6) and (7), and
thereby to the P, and R, via Eq. (3) and to %, and K| via Egs.
(11)—(14). Once the iteration has converged, the resulting final
values of the o, then combine with Egs. (6) and (7) to give the
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final new-time values of the p, and pe. Note that the &w, are
computed sequentially in the GSN method, but simultaneously
in the NR method. Consequently, each GSN iteration actually
produces N intermediate approximations to the «,, whereas
each NR iteration produces only one. The corresponding inter-
mediate GSN approximations to the p, and pe are needed to
evaloate F, and 9F /0w, in Eq. (27). f the p, and pe are continu-
ally updated as running sums, these intermediate approxima-
tions are simply the “‘current’” values of these sums [3, 4].
The iteration scheme as a whole is structured just as before
[3]. The iteration is initialized by setting w® = 0, which implies
that p® = 5, and (pe)™ = pé The first N, iterations are per-
formed with the one-step GSN method, and if convergence has
not already occurred, all subsequent iterations are performed
with the Newton--Raphson method. We currently take N, =
10. The iteration scheme is considered to have converged when

),

Atk

Adw,
, 10‘1353(’—) G
‘f5

P.l'

.| < & max (-IZS R,
for all s, where Aw, = do™ — Sw™". Currently & is taken to
be (.02, but convergence is typically so fast at the end that much
smaller values of & require only a few additional iterations.

In Ref. [3] we noted that the Jacobian matrix becomes ill-
conditioned when a single trace species of very small concentra-
tion is involved in two or more reactions. When this happens,
Iq. (30) may produce overshoots in the @ large enough to
drive the p, and/or ¢ negative. A trial-and-crror procedure for
successively scaling back w, in such situations was presented
in Ref. [3]. Here we replace this previous procedure by a much
simpler single-step procedure for scaling the dw, back to values
that preserve the positivity of the p, and e. We first compute
the changes in p, and pe produced by the unscaled dw, given
by Eq. (30). According to Eqs. (6) and (7), these changes are

S =M, 2, (by, — i), (32)

8(pe) = 2, Qs (33)

The scaling procedure then consists in simply replacing 8w, by
pdw,, where w is the largest value in the interval 0 < u = 1
for which p/ + udp, > vypf for ali k and (pe}” +
ud(pe) > y(pe)”, where the parameter v > 0 specifies the
margin of safety. This value of w is readily found to be

y—1 } 34
" min(Sp/p}”, & pe)/{pe)) |’ 69

A = min [I

We currently take ¥ = 0.02.
In the present context there is also an entirely new source
of ill-conditioning that must be considered. This arises due
to the fact that chemical reaction mechanisms often contain
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reactions that are independent in a kinetic sense but which
become linearly dependent in the equilibrium limit of large rate
coefficients. Consider, for example, the system

2H, =H, + 2H
H, + H=3H,
representing dissociation of H, due to collisions with the third

bodies H, and H, respectively. For this system, Eq. (10) takes
the form

o oo [HHE
e <
W _ _ [HP
oo~ T — 5

where [X] = py/M, is the molar concentration of species X. In
the equilibrium limit as &z, k» — =, these equations become
functionally dependent and J consequently becomes singular.
This degeneracy is due to the fact that in this limit, the system
depends on the w, only through the species concentrations and
the energy, which in turn do not depend on each of the w,
separately but only on a smaller number of linear combinations
of them. In the present example, the H; and H concentrations
and the energy do not depend on w, and w, separately, but
only on their sum. The separate values of @, and w, are then
underdetermined, bug this has no physical consequences; any
solution with the correct value of @ + w, produces the correct
o and pe. In such situations, it is therefore merely necessary
to determine any one of the infinite number of solutions for
the w,. This may readily be accomplished by switching to a
suitable method for solving an underdetermined system when-
ever the Jacobian matrix becomes nearly singular. In our imple-
mentation, whenever DGESVX finds that the reciprocal condi-
tion number of J is less than 100 times the machine precision,
we simply switch to the LAPACK [9] routine DGELSS, which
uses singular value decomposition to compute the minimal-
norm solution to the nearly singular system.

IV. EXAMPLE CALCULATION

The method described above was tested on the following
simplified set of hydrogen—-oxygen reactions [10]:
H+0,=0H+0
H:+0=0H+H
H,0 + O =20H
H, +OH=H,0+H
H+H+ HO=H, + HO
H + OH + 0 = H,0 + H,0
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3500.0
............................ A[= 1E_6
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000K At=1E-7
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25000(.)0130 1.0BE-5 20E5 3.0E5 40E5 35.0ES5
t(s)
FIG. 1. Temperature histories for different values of Ar.

H+ O + H,0=0H + H,0
0+ 0+H0=0,+ HO.

The first four reactions are relatively fast two-body exchange
reactions, while the next four are relatively slow three-body
dissociation/recombination reactions. Reactions involving third
bodies other than H,O are neglected for simplicity, since H,O
has the highest third-body efficiency and is present in the largest
concentrations.

These reactions were allowed to proceed in a closed volume
initially filled with pure H;O at T = 3500 K and atmo-
spheric pressure. This problem contains no fluid dynamics, so
[3pfat]ly = [9(pe)/dt]y, = 0. Only four of these reactions are
linearly independent in the equilibrium Iimit, so the calculation
was first performed in this limit (by setting the k; to very
large values) in order to test the logic for dealing with an
underdetermined system. The correct equilibrium solution was
indeed obtained without any numerical difficulties.

The true kinetic problem was then solved, using the correct
values of the kg [10], for Az = 1077, 5 X 1077, and 107% 5. For
comparison purposes, the problem was also solved vsing a
simple explicit scheme with a very small time step of At =
2 X 107* 5, which was empirically found to be about 80% of
the explicit stability limit. The calculations were run out to a
final time of r = 5.0 X 107% 5, which is perhaps 25% of the
way to steady state. The resulting temperature and OH molar
concentration histories are shown in Figs. 1 and 2, respectively.
The results for At = 1077 s are visually indistinguishable from
those of the explicit calculation with Ar = 2 X 1073 5, while
those for Ar = 5 X 1077 and 107% s show small errors due to
the larger values of As. In this problem, therefore, the present
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At=2E-8 (explicit)

) O i e )
OO%. 0 1.0E-5 20E-5 3.0E-5 4.0E5 50E3

t(s)

FI1G. 2. OH molar concentration histories for different values of Az

implicit method produces reasonably time-accurate solutions
with time steps some 50 times larger than typical explicit time
steps. This factor is of course problem-dependent, as it is deter-
mined by the separation between the slow and fast chemical
time scales in the problem. Iteration counts per time step in
these calculations ranged between three and 12, and showed
the expected tendency to be highest for large At and early in
the transient.

This same problem was also solved with At = 107% s using
a noniterative linearly implicit scheme often used for kinetic
reactions in combustion calculations {3, 6]. The calculation was
stable but the resulting solution was highly inaccurate. This
illustrates the important point that simple partially implicit
schemes may be stable for large At, yet still have accuracy
restrictions comparable to explicit stability limits. Of course,
schemes of this type are not generally intended for use with
very large Ar, Fully implicit schemes are much more faithful
to the physics in problems where strongly coupled effects come
into balance with each other on time scales short compared to
those of interest in the calculation.

In the preceding test problem, the benefits of the nonlinear
preconditioning are minimal becaunse the reactions are usually
first order in the reference species. To obtain a better indication
of the benefits of preconditioning, the method was also applied
to the following set of equilibrium reactions frequently used
in combustion simulations:
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Hy= 211

0,=20

N, = 2N
0, + H, == 20H
0, + 2H,0 = 40H
0, + 2C0 = 2C0,

which involve concentrations raised to powers as high as four.
The k;, were all set to very large values, and the reactions were
allowed to occur in a closed volume initially at atmospheric
pressure with molar concentration ratios of

(H1: [H:): [O] - [OQ;]  (N]: {N,]: [OH] : {H,Q]: [COY: [CO,)
=0.01:0.01:001:0.16:0.01:0.58:0.01:0.1:0.01:01

with initial temperatures ranging from 1300 K to 4900 K in
100 K increments. The calculations were performed both with
and without preconditioning. The average iteration count was
7.9 with preconditioning, and 15.1 without.
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